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I N T R O  A N D  Q U I C K  S T A R T  

Overview and Quick Start 
enerating a high-quality genome assembly is a critical foundation for the 
analysis of any organism. In this cookbook, we have tried to put together a 
recipe, based on our latest work in the field, for creating high-quality 
chromosome-length genome assemblies using publicly available tools. Our 

hope is that, using this recipe, anyone, even without prior experience in assembling 
genomes, will be able to produce high-quality chromosome-length genomic sequences.  

The procedures described here rely on using Hi-C as a source of linking information 
during genome assembly. The methods used are robust with respect to input data and are 
compatible with the cheapest data types available at present, allowing, among other 
things, to produce mammalian genome assemblies for as little as $1000. 

Find out more about our work on genome assembly at http://aidenlab.org/assembly. 

Overview 
The cookbook covers the following topics, in the order that mirrors a typical workflow 
for a Hi-C-based genome assembly project: 

1) DNA-Seq library preparation, sequencing and assembly of the draft genome (Chapter 
2); 

2) Hi-C library preparation, sequencing and alignment to the draft genome assembly 
(Chapter 3); 

3) Using a fully automatic pipeline to correct misjoins, order, orient and anchor scaffolds 
from the draft assembly into a candidate chromosome-length assembly (Chapter 4); 

4) Manual review of the candidate assembly in Juicebox Assembly Tools for quality 
control and interactive correction of the automatic output (Chapter 5). 
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FIGURE 1. Overview of topics covered by this manual. The topics are discussed in the order reflective of a typical workflow for a 
Hi-C-based genome assembly project. 

Quick Start Guide 
In this section we will give a quick start guide to follow the $1000 chromosome-length 
mammalian genome assembly procedure introduced in (Dudchenko et al. 2018), see 
FIGURE 2. The workflow and respective commands are listed below: 

1. DNA sequencing and draft genome assembly (contigging): 

a. Generate a short insert size PCR-free DNA-Seq library (insert size 
~400bp) compatible with Illumina platform and sequence it with PE150 
reads to collect at least 300 million reads. 

b. Install and assemble the output using w2rap-contigger 
(https://github.com/bioinfologics/w2rap-contigger), see (B. Clavijo et 
al. 2017). 

w2rap example command 

./w2rap-contigger -t 48 -m 900 -r R1.fq,R2.fq -p w2rap --dump_all 1 

ln –sf a.lines.fasta draft.fa 

Skip this step if you already have a draft genome assembly. See Chapter 2 for 
some comments on DNA-Seq data generation and analysis. 

2. Hi-C sequencing and data analysis with Juicer: 

a. Generate an in situ Hi-C library (see (Rao, Huntley et al. 2014) for a 
comprehensive protocol) and sequence it to at least 100 million paired-
end reads. 

b. Align the resulting reads to draft genome assembly using Juicer (Durand, 
Shamim et al. 2016). 

DNA-Seq	&	
contigging	

Hi-C	&	Juicer	
analysis	

3D-DNA	
scaffolding	

JBAT				
review	
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Steps to run Juicer on the Hi-C data 

bwa index draft.fa 

generate_site_positions.py MboI draft draft.fa 

./juicer/scripts/juicer.sh –g draft –s MboI –z draft.fa –y draft_MboI.txt –p 
assembly 

See Chapter 3 and https://github.com/theaidenlab/juicer for details on how to 
set up a working directory to run Juicer. The file necessary for downstream 
analysis is aligned/merged_nodups.txt, a duplicate-free list of paired alignments 
from an in situ Hi-C experiment. 

3. Generate a candidate assembly with 3D de novo assembly (3D-DNA) pipeline: 

Example command for running 3D-DNA on a draft genome assembly 

./3d-dna/run-asm-pipeline.sh draft.fa merged_nodups.txt 

See Chapter 4 and https://github.com/theaidenlab/3d-dna for details on how to 
run and tune 3D-DNA pipeline. The pipeline, among other output, will produce 
a candidate chromosome-length genome assembly sequence (.FINAL.fasta), an 
associated contact map (.final.hic), and a custom assembly file (.final.assembly) that 
stores, in a concise form, the relationship between the original draft sequences 
and the output. 

You can skip this step if you already have a chromosome-length or near 
chromosome-length genome assembly that you believe you can handle manually. 
To visualize the draft assembly ‘as is’ run: 

Visualize candidate assembly 

awk –f ./3d-dna/utils/generate-assembly-file-from-fasta.awk draft.fa > 
draft.assembly 

./3d-dna/visualize/run-assembly-visualizer.sh draft.assembly merged_nodups.txt 

and use the produced draft.assembly and the draft.hic files in place of the 
.final.assembly and .final.hic with Juicebox Assembly Tools as described below. 

4. Review the candidate assembly using Juicebox Assembly Tools (JBAT): 
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Download the latest distribution of desktop Juicebox (≥1.8.8) from 
https://github.com/theaidenlab/juicebox/wiki/Download and follow this 
tutorial video (https://www.youtube.com/watch?v=Nj7RhQZHM18) and 
instructions in Chapter 5 to open the .final.hic file (“Open…” menu item in the 
File menu), load the corresponding .final.assembly file (“Import Map Assembly” 
menu item in the Assembly menu), examine and rectify the assembly if necessary, 
and save changes (“Export Assembly” menu item in the Assembly menu). 
Changes will be stored in a form of a modified .assembly file. In order to convert it 
into a fasta sequence run: 

Generate a fasta sequence after JBAT review  

./3d-dna/ run-asm-pipeline-post-review.sh –r draft.final.review.assembly 
draft.fasta merged_nodups.txt 

In addition to the chromosome-length genome sequence (.FINAL.fasta), the 
pipeline will produce a new .final.hic file for concluding quality control. 

 

 

FIGURE 2. Workflow for $1000 chromosome-length mammalian genome assembly, from (Dudchenko et al. 2018). 

Contact Information 
Feel free to post your questions and comments, suggest improvements and submit bug 
reports on any of the tools developed by the lab at our forum: 

http://www.aidenlab.org/forum.html 

This document was assembled by Olga Dudchenko.  



D N A - S E Q  A N D  D R A F T  A S S E M B L Y  

DNA-Seq and Draft 
Assembly 

he typical approach to 3D genome assembly is to generate two types of data: 
DNA-Seq and Hi-C. Here we use the term DNA-Seq to refer to any type of 
DNA sequencing that produces a genome-wide draft – fasta-file that contains all 
(most) of the sequences of the genome of interest but in an often highly 

fragmented form. (We will refer to the process of making a draft assembly as contigging 
though depending on the type of data used and the software employed the draft may 
consist of scaffolds rather then contigs, i.e. allow for presence of gaps in fragments rather 
than comprise perfectly contiguous individual pieces.) 

Often various linking data are available in addition to standard DNA-Seq that can be used 
to piece the draft fragments together thus increasing the average fragment size and 
reducing the total number of fragments in the draft assembly. The Hi-C-based 
approaches described here are, as a rule, compatible with these additional linking 
methods, but do not require them to ensure whole-chromosome assembly. 

Once the draft assembly is generated the Hi-C data are later used to anchor, order and 
orient the fragments into whole chromosomes. (We refer to the final result of this 
procedure as chromosome-length scaffolds.) If you already have a draft genome assembly 
you can skip this chapter. Note that when assembling small bacterial genomes it is 
sometimes possible to generate the draft sequence from contigging raw Hi-C data thus 
allowing one to skip DNA-Seq library construction and sequencing, see e.g. (Marbouty et 
al. 2014). 

DNA-Seq Data Models 
3D genome assembly is compatible with all DNA-Seq data types of which we are aware 
including Illumina, Pacific Biosciences, Oxford Nanopore, Sanger and Roche 454 data. 
The choice in favor of a particular data type is mostly a matter of available resources. 

Very often it is possible to generate chromosome-length scaffolds from the cheapest data 
type available at the moment: Illumina PE150 sequencing (Dudchenko et al. 2018). 
Following this strategy we have assembled three new mammalian genomes de novo to 
chromosome-length for under $1000 (Dudchenko et al. 2018). The libraries were 
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prepared using Illumina’s TruSeq DNA PCR-Free kit for short insert size DNA-Seq 
library preparation, following the manufacturer’s protocols, aiming for insert size 
distribution centered at around 400bp. The sequencing was done on a HiSeq X 
instrument (maximal read length: 2x150). 

More expensive data types such as Illumina PE250 sequencing, Pacific Biosciences and 
Oxford Nanopore sequencing have the capacity to boost contiguity and increase the 
percentage of anchored sequenced bases. See TABLE 1 for comparison of NA12878 
genome assemblies generated using different DNA-Seq data models, from (Dudchenko 
et al. 2018). 

Intermediate Linking Data 
Often intermediate linking data are available for a sample that allow to perform some 
local joining of the draft sequence fragments produced from the original DNA-Seq 
experiment, thus increasing the average fragment size and reducing the number of 
fragments in the draft. Typical examples of such data include mate-pair sequencing, 
Fosmid and BAC sequencing, 10X and optical mapping, in vitro Hi-C (Chicago), genetic 
linkage and population data. 

In our experience the algorithms described here are compatible with all of these methods 
though, as a rule, it is not necessary to employ them to achieve chromosome-length 
scaffolds if the draft scaffold N50 is ≥10-100kb (though increasing the draft scaffold N50 
may allow to incorporate more bases into chromosome-length scaffolds). Note that 
starting with approximate scaffolds such as pseudomolecules created from linkage data or 
scaffolds that contain multiple large gaps (≥15kb) such as, for example, generated with 
optical mapping, can sometimes have detrimental effect on the final assembly and better 
results can be achieved with current methods by discarding the intermediate data for 
scaffolding purposes and using it for validation instead. When in doubt, examining the 
draft and output in Juicebox Assembly Tools is often helpful (see Chapter 5). 

Draft Assembly 
Just as 3D genome assembly using methods described in this manual is compatible with 
all DNA-Seq data types it is also compatible with all contiggers recommended for the 
aforementioned data types, of which we are aware. We have successfully used the output 
of DISCOVAR de novo (Weisenfeld et al. 2014; Love et al. 2016), ALLPATHS-LG 
(Gnerre et al. 2011) and long read assemblers Canu (Koren et al. 2017), FALCON and 
FALCON-Unzip (Chin et al. 2016), when generating chromosome-length scaffolds with 
our pipeline (Dudchenko et al. 2017; Matthews, Dudchenko, Kingan et al. 2017; 
Dudchenko et al. 2018). We have also used output from combinatorial pipelines that 
incorporate intermediate data types such as HiRise (Putnam et al. 2016), see (Dudchenko 
et al. 2018), Chromium scaffolding from 10X, BioNano Pipeline, and RefAligner 
(unpublished). 



 

 9 

For our $1000 mammalian genome procedure we recommend using the w2rap contigger 
(B. Clavijo et al. 2017; B. J. Clavijo et al. 2017) based on DISCOVAR de novo (Weisenfeld 
et al. 2014; Love et al. 2016). The contigger can be run on hardware with less than 1Tb of 
RAM and typically finishes in under 48 hours for mammalian genome assemblies (with 
~1Tb RAM). When run in high-memory environment such as on IBM’s Large Memory 
Power System faster runtimes can be achieved, with the contigging step for hs-1k from 
(Dudchenko et al. 2018) taking less than 24 hours from 300M Illumina PE150 reads. See 
https://github.com/bioinfologics/w2rap-contigger for more details about w2rap. 

w2rap example command 

w2rap-contigger -t 48 -m 900 -r R1.fq,R2.fq -p w2rap --dump_all 1 

References 
Don’t forget to cite the contiggers you are using in your research! 
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TABLE 1. Detailed statistics for several human genomes assembled using 3D-DNA and Juicebox Assembly Tools as compared to 
hg5 and hg38 reference genomes. The listed assemblies were created with 7X Hi-C data (same for all assemblies) and the following DNA-
Seq data types: 300M Illumina PE150 reads from a short insert size library (assembled with w2rap package (B. Clavijo et al. 2017; B. J. 
Clavijo et al. 2017));  372M Illumina PE250 reads from a short insert size library  and assembled with DISCOVAR de novo (Weisenfeld et 
al. 2014) (note that this assembly was generated without Juicebox Assembly Tools, see (Dudchenko et al. 2017) for details); collection of 
short reads from libraries with varying insert sizes assembled with ALLPATHS-LG (Gnerre et al. 2011); Oxford Nanopore data polished 
with Illumina and assembled with Canu assembler from (Jain et al. 2017); Pacific Biosciences data assembled with FALCON assembler 
and shared by the McDonnell Genome Institute (NCBI accession number: GCA_002077035.2). Statistics listed include: (1) the percentage 
of 1kb sequences that are placed in chromosome-length scaffolds and corresponds to the “correct” chromosome in hg38 (identified by 
whole-genome alignment); (2) the percentage of randomly selected pairs of 1kb sequences assigned to the same chromosome-length 
scaffold in the assembly that are ordered in agreement with hg38; (3) the percentage of consecutive pairs of 1kb sequences that are ordered 
in agreement with hg38; (4) the percentage of 1kb sequences that are oriented in agreement with hg38. Only sequences uniquely aligning to 
hg38 (mapq≥60) were considered in all of the analyses. 
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J U I C E R  A N A L Y S I S  O F  H I - C  D A T A  

Hi-C and Juicer Analysis 
i-C is used to assemble genomes by using the 3D proximity relationships 
between short contigs and scaffolds (draft fragment sequences) to anchor, 
order and orient them. In this section we comment on Hi-C library preparation 
and sequencing, and analyzing Hi-C data with respect to the draft assembly to 

make a genome-wide record of those 3D proximity relationships. 

In situ Hi-C 
Although much of 3D genome assembly is conceptually compatible with other 
proximity-based ligation assays and other types of 1D-distance-dependent pairwise data 
such as mate pair, linked reads and linkage data, for best results we recommend 
generating an in situ Hi-C library. 

In situ Hi-C protocol combines the original Hi-C protocol from 2009 (Lieberman-Aiden, 
van Berkum et al. 2009) with nuclear ligation assay (Cullen, Kladde, and Seyfred 1993), in 
which DNA is digested using a restriction enzyme, DNA-DNA proximity ligation is 
performed in intact nuclei, and the resulting ligation junctions are quantified. 

The in situ Hi-C protocol involves crosslinking cells with formaldehyde, permeabilizing 
them with nuclei intact, digesting DNA with a suitable 4-cutter restriction enzyme (such 
as MboI), filling the 5’-overhangs while incorporating a biotinylated nucleotide, ligating 
the resulting blunt-end fragments, shearing the DNA, capturing the biotinylated ligation 
junctions with streptavidin beads, and analyzing the resulting fragments with paired-end 
Illumina sequencing (see FIGURE 3). 

In situ Hi-C protocol has several major advantages over earlier proximity ligation assays. 
Crucial, in situ ligation reduces the frequency of spurious contacts due to random ligation 
in dilute solution. It also allows for more uniform coverage, enables higher resolution and 
more efficient cutting of chromatinized DNA through the use of a 4-cutter rather than a 
6-cutter as in many earlier protocols. See (Rao, Huntley et al. 2014), Extended 
Experimental Procedures section (I.a.1: In situ Hi-C protocol) for a detailed description 
of method. 

The protocol focuses on cultured cells but is easily adaptable to other types of tissues 
such as animal blood, animal tissue, bacteria, insects and plants. 
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As with many other applications quality control of sequencing libraries is very important 
for genome assembly. A lot of research has gone into developing useful QC metrics for 
genomic experiments including Hi-C (see, for example, section II.d in (Rao, Huntley et al. 
2014)). It must be noted however that the majority of these metrics relies on aligning 
small amounts of sequencing data to a chromosome-length genome reference. The latter 
is of course unavailable unless performing a resequencing project. 

In view of this it is advisable to monitor the critical enzymatic reactions during Hi-C 
library preparation by using, for example, gel electrophoresis. See also notes in Juicer 
Analysis of Hi-C Data section below. 

 

FIGURE 3. We recommend in situ Hi-C as a source of linking data to use during genome assembly. In the in situ Hi-C protocol, 
enzymatic reactions to capture DNA-DNA proximity are performed in intact nuclei, leading to considerably reduced frequency of 
spurious contacts as compared to older protocols.  In brief, performing Hi-C entails the following steps: crosslinking the sample to glue 
DNA and proteins in place, and then cutting and religating the DNA based on physical proximity. The ligation junctions are marked with 
biotin, allowing for enrichment of the final library for ‘interesting’ chimeric sequences via biotin-streptavidin pull-down. Chimeras are then 
prepared for paired-end sequencing on the Illumina instrument. From (Rao, Huntley et al. 2014). 

Juicer Analysis of Hi-C Data 
Juicer is an open-source, one-click tool for processing large Hi-C datasets typical when 
studying chromatin architecture (Durand, Shamim et al. 2016). In order to meet the 
engineering challenge of handling large datasets, Juicer supports the use of 
parallelization and hardware acceleration, including CPU clusters, general-purpose 
graphics processing units (GP-GPUs), and field-programmable gate arrays (FPGAs). 
(When used for assembly purposes these are often not necessary as the datasets involved 
are, relatively, small and can often be run on a single machine.) Juicer is also compatible 
with a variety of cloud and cluster architectures. Juicer is closely based on the algorithms 
that were introduced in (Rao, Huntley et al. 2014). 

Learn more about Juicer here: https://github.com/theaidenlab/juicer. 

Juicer transforms raw sequence data into a list of Hi-C contacts (pairs of genomic 
positions that were adjacent to each other in 3D space during the experiment). To 
accomplish this, read pairs are aligned to the genome of interest, both duplicates and 
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near-duplicates are removed, and read pairs that align to three or more locations are set 
aside. The Hi-C contacts are listed in the merged_nodups.txt file (mnd file) and this is the 
file that serves as input for downstream analysis (running 3D-DNA and JBAT). 

In order to generate the mnd file for a draft genome assembly the following steps should 
be performed. 

1. Follow the Installation instructions to set up dependencies for alignment and 
creation of the Hi-C pairs merged_nodups.txt file (GNU CoreUtils and BWA). 
(Check also Juicer on a cluster or Juicer in the cloud sections of the Juicer wiki.) 

2. Index the draft fasta sequence to prepare it for alignment. The default aligner 
used by Juicer is BWA (Li and Durbin 2009). 

Index the draft fasta sequence using BWA 

bwa index draft.fa 

3. Pre-calculate the position of the enzyme restriction sites with respect to the draft 
genome sequence. You can use the following script from the Juicer package: 
generate_site_positions.py 
(https://github.com/theaidenlab/juicer/blob/master/misc/generate_site_positi
ons.py). 

Generate a restriction sites file for draft fasta 

generate_site_positions.py MboI draft draft.fa 

The latter command will create a draft_MboI.txt file that represents a sorted list of 
positions in the draft assembly where the fasta matches the MboI restriction 
enzyme recognition sequence (GATC). One line in the restriction site file 
corresponds to one sequence in the draft fasta. 

4. Set up a working directory to contain a /fastq directory with the raw fastq files 
from sequencing a Hi-C library (the supported naming conventions are 
_*R[1,2]*.fastq and _*R[1,2]*.fastq.gz) and run Juicer. 

Run juicer 

./juicer/scripts/juicer.sh –g draft –s MboI –z draft.fa –y draft_MboI.txt –p 
assembly 
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(Note that some Juicer versions do not do not gracefully handle the assembly 
scenario. In such cases there will appear error messages reporting inter.hic and 
inter_30.hic files missing.) If you want to save time by skipping the statistics 
calculation run the juicer.sh command with a –S early flag to exit the pipeline 
immediately upon generation of the merged_nodups.txt file. Make sure to check 
the error logs in this case as the internal checks that are run at the end of the 
pipeline may not execute to help you access the results. (We are working to rectify 
this.) 

5. Quality control/troubleshoot. Note that the majority of statistics developed as 
part of the Juicer pipeline are not robust with respect to the draft genome 
assembly quality and will differ dramatically when the same Hi-C library is 
processed against genome assemblies of varying levels of contiguity. As such they 
can have limited utility for quality control and troubleshooting, especially for 
highly fragmented genomes. 

In such cases it is often useful to pay attention to the percentage of reads 
containing ligation junctions in the raw fastq files of the Hi-C library. The exact 
number depends on the restriction enzyme, size selection protocols and the 
sequencing read length, but typically amounts to 20-40% for a reasonably good in 
situ Hi-C library. Low numbers may indicate poor Hi-C data quality. 

For relatively contiguous drafts standard Juicer statistics are easier to interpret and 
can be of help when accessing the sequencing results. 

References 
If you use Juicer in your analysis, please cite the following paper: 

Neva C. Durand*, Muhammad S. Shamim*, Ido Machol, Suhas S. P. Rao, Miriam H. 
Huntley, Eric S. Lander, and Erez Lieberman Aiden. 2016. “Juicer Provides a One-
Click System for Analyzing Loop-Resolution Hi-C Experiments.” Cell Systems 3 
(1): 95–98. https://doi.org/10.1016/j.cels.2016.07.002. (*These authors contributed 
equally to this work). 



R U N N I N G  3 D - D N A  

Candidate Assembly with 
3D-DNA Pipeline 

D-DNA is a custom computational pipeline to correct misassembles, anchor, 
order and orient fragments of DNA based on Hi-C data. An overview of the 
workflow is schematically given in FIGURE 4. 

We begin with a series of iterative steps whose goal is to eliminate misjoins in the input 
fragments. Each step begins with a scaffold pool (initially, this pool is the set of input 
fragments themselves); the scaffolding algorithm is used to order and orient these 
scaffolds; and the misjoin correction algorithm is applied to detect errors in the scaffold 
pool. Finally, the edited scaffold pool is used as an input for the next iteration of the 
misjoin correction algorithm. The ultimate effect of these iterations is to reliably detect 
misjoins in the input scaffolds without removing correctly assembled sequence. 

After the iterations are complete, the scaffolding algorithm is applied to the revised input 
scaffolds, and the output – a single “megascaffold” which concatenates all the 
chromosomes – is retained for post-processing. This post-processing includes four step: 
(i) a polishing algorithm; (ii) a chromosome splitting algorithm, which is used to extract 
the chromosome-length scaffolds from the megascaffold; (iii) a sealing algorithm, which 
detects false positives in the misjoin correction process, and restores the erroneously 
removed sequence from the original scaffolds; and (iv) a merge algorithm, which corrects 
misassembly errors due to undercollapsed heterozygosity in the input scaffolds. Step (iv) 
is not run by default and is only required if the draft is known to contain substantial 
amounts of undercollapsed heterozygosity, see (Dudchenko et al. 2017; Matthews, 
Dudchenko, Kingan et al. 2017). 

 

FIGURE 4. Workflow diagram for the 3D-DNA pipeline. The pipeline starts with setting aside very small scaffolds (threshold side 
defined by the --input option). The remaining scaffolds are ordered and oriented, and the output is used to detect and correct misjoins in 
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the input scaffolds. The corrected scaffolds are then again subject to ordering and orienting: the procedure (from scratch). This can be 
repeated several times (controlled by the --rounds option). Once the iterative scaffolding and misjoin detection are finished, the results are 
polished by running a coarse-grained misassembly detection and rescaffolding the resulting large pieces. The resulting megascaffold is then 
split into chromosomes, sealed to examine and restore false-positive edits introduced during misjoin detection and, if running in diploid 
mode) examined for overlaps (undergoing development, for stable version see the original 3D-DNA distribution). From (Dudchenko et 
al. 2017), with modifications. 

For more details on the workflow of the 3D-DNA pipeline see (Dudchenko et al. 2017). 

Prerequisites and Installation 
• Bash >=4 

• GNU Awk >=4.0.2 

• GNU coreutils sort >=8.11 

• Java version >=1.7 

• LastZ (version 1.03.73 released 20150708) – only if planning to run the merge 
part of the pipeline; 

• Python & Numpy for Python – only if planning to run the chromosome 
number-aware version of the chromosome splitting module. 

We also highly recommend installing the GNU Parallel shell tool to speed up the pipeline: 

• GNU Parallel >=20150322. 

There is no need for installation. The pipeline consists of one main bash wrapper script 
(run-asm-pipeline.sh) that calls individual modules to assemble a genome. Check 
https://github.com/theaidenlab/3d-dna for the latest distribution. 

Quick Start, Arguments and Options 
As input, the pipeline requires: 

1) a fasta file describing the draft assembly (.fasta, .fa and .fna files are allowed), and  

2) a “merged_nodups.txt” file which is generated by the Juicer pipeline (see Chapter 
3), and contains a duplicate-free list of paired alignments from an in situ Hi-C 
experiment to the draft assembly fasta file. 

To run the pipeline with default parameters try the following. 

Example run with default parameters 
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./run-asm-pipeline.sh draft.fa merged_nodups.txt 

In many cases, running the 3D-DNA pipeline in combination with a review step in 
Juicebox Assembly Tools is sufficient to yield highly accurate assemblies. If the output is 
unsatisfactory, or to avoid the need for manual refinement in JBAT, it is also possible to 
examine the output of 3D-DNA (and/or individual 3D-DNA modules) in Juicebox to 
guide modification to default parameters for tuning performance to a particular draft 
genome. 

Scenarios in which modifications of default parameters are typically required are: when 
working with small amounts of Hi-C data (<7X coverage) or with data generated from a 
low frequency restriction enzyme, when the Hi-C signal displays strong coverage biases or 
is noisy such as when working from in dilution Hi-C libraries or libraries from degraded 
samples, when assembling draft scaffolds with large gaps or badly polished long-read data, 
when assembling small genomes or drafts that contain large amounts of duplicated 
sequence due to undercollapsed heterozygocity, or when assembling from a partially 
diploid draft. These problems usually manifest as too much sequence being annotated as 
‘debris’ and removed from the assembly process, and can be addressed by tuning the edit 
module (see some comments on this below). 

Run help to see the list of parameters available for tuning pipeline performance. The most 
important parameters include 

Options, short list: run-asm-pipeline.sh -h 

-i|--input  the size threshold for the draft sequences to scaffold. 
Contigs/scaffolds smaller than input_size are going to be ignored 
by the algorithm and concatenated to the output without change. 
Default: 15000. 

-r|--rounds  the number of iterative rounds for misjoin correction. Default: 2. 

-m|--merge  the parameter to specify whether to run the merge module or 
not. Merging is not run by default and should only be employed 
if high levels of undercollapsed heterozygosity are expected to be 
present in the draft assembly. 

-h|--help  shows this help. Use –h for main options and --help for a full set 
of options. 

The 3D-DNA starts by putting aside the input fragments smaller than the value of 
parameter passed with the –i|--input flag. Due to their small size, these scaffolds 
(referred to as ‘Tiny’ in (Dudchenko et al. 2017)) have relatively few Hi-C contacts, 
making them more difficult to reliably analyze. Including them into analysis typically 
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results in some lowering of local ordering and orientation accuracy. Once separated, the 
tiny scaffolds are not processed further and are simply concatenated to the final output 
fasta without modification. 

As such, the –i|--input parameter almost exclusively defines the percentage of the draft 
sequence that will enter into the assembly process and have a chance to be incorporated 
into chromosome-length scaffolds (referred to as ‘Resolved’ in (Dudchenko et al. 2017)). 
Consider lowering the default value for this parameter if wishing to increase the 
percentage of resolved sequence even at the expense of slightly reduced accuracy. For the 
accuracy estimates with default parameters see (Dudchenko et al. 2017, 2018). 

An important part of 3D-DNA is misjoin correction. The misjoin correction is 
performed in a series of iterative steps (rounds) in which the 3D-DNA scaffolding 
algorithm is employed to create a preliminary genome-wide assembly and analyze it for 
discrepancies in the Hi-C signal (see (Dudchenko et al. 2017), Pipeline description section 
in Supplementary Online Material). Consider increasing the default number of rounds 
defined by the –r|--round option if dealing with a draft that contains an exceptionally 
large numbers of misjoins. When the draft is highly accurate however the candidate 
output without any error correction (-r 0) is often good enough for manual review in 
Juicebox Assembly Tools. Whichever the user-defined number, 3D-DNA will output 
files compatible with Juicebox Assembly Tools review and analysis for each of the 
individual rounds, so that the user can choose which one to use a posteriori. 

An occasional error modality found in draft haploid genome assemblies is undercollapsed 
heterozygosity. This is when there exists a subset of the scaffolds such that each scaffold 
accurately corresponds to a single locus in the genome, but these loci overlap one 
another. Consequently, there are individual loci in the genome that are covered multiple 
times by different scaffolds. This error is typically caused by the presence of multiple 
haplotypes in the input sample material, which are sufficiently different from one another 
that the contiggers do not recognize them as emerging from a single locus. A typical 
manifestation of this error is larger-than-expected total haploid assembly size. 

To address this class of misassembly error, run the pipeline with a –m|--merge flag. This 
will run the 3D-DNA algorithm for merging assembly errors due to undercollapsed 
heterozygosity (see (Dudchenko et al. 2017; Matthews et al. 2017)). Note that this section 
of the pipeline is currently under development. For stable release refer to the original 3D-
DNA release. 

For a more complete list of options pertaining to workflow and various individual blocks 
of the pipeline run the long form of help command line option. 

Options, full list: run-asm-pipeline.sh - - help 

** workflow** 
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-s|--stage  the name of any of the later stages of the pipeline to fast-forward 
to if necessary. Can be “polish”, “split”, “seal”, “merge” and 
“finalize”. 

-e|--early-exit exit pipeline after “round 0” of scaffolding and map generation. 

-f|--fast-start start pipeline assuming “round 0” of scaffolding is finished. 

 

**scaffolder supplementary options** 

-q|--mapq mapq threshold for scaffolding and visualization. Default: 1. 

 

**misjoin detector supplementary options** 

--editor-coarse-resolution  

 misjoin editor coarse matrix resolution, should be one of the 
following: 2500000, 1000000, 500000, 250000, 100000, 50000, 
25000, 10000, 5000, 1000. Default: 25000. 

--editor-coarse-region   

 misjoin editor triangular motif region size. Default: 125000. 

--editor-coarse-stringency 

 misjoin editor stringency parameter. Default: 55. 

--editor-saturation-centil 

 Misjoin editor saturation parameter. Default: 5. 

--editor-fine-resolution 

 misjoin editor fine matrix resolution, should be one of the 
following: 2500000, 1000000, 500000, 250000, 100000, 50000, 
25000, 10000, 5000, 1000. Default: 1000. 

--editor-repeat-coverage 

 misjoin editor threshold repeat coverage. Default: 2. 
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**polisher supplementary options** 

--polisher-input-size  

 polisher input size threshold. Scaffolds smaller than 
polisher_input_size are going to be placed into unresolved 
scaffolds. Default: 1000000. 

--polisher-coarse-resolution 

 polisher coarse matrix resolution, should be one of the following: 
2500000, 1000000, 500000, 250000, 100000, 50000, 25000, 
10000, 5000, 1000. Default: 25000. 

--polisher-coarse-region 

 polisher  triangular motif region size. Default: 3000000. 

--polisher-coarse-stringency 

 polisher stringency parameter. Default: 55. 

--polisher-saturation-centile 

 polisher saturation parameter. Default: 5. 

--polisher-fine-resolution 

 polisher fine matrix resolution, should be one of the following: 
2500000, 1000000, 500000, 250000, 100000, 50000, 25000, 
10000, 5000, 1000. Default: 1000. 

 

**splitter supplementary options** 

--splitter-input-size  

 splitter input size threshold. Scaffolds smaller than 
splitter_input_size are going to be placed into unresolved. 
Default: 1000000. 

--splitter-coarse-resolution 

 splitter coarse matrix resolution, should be one of the following: 
2500000, 1000000, 500000, 250000, 100000, 50000, 25000, 
10000, 5000, 1000. Default: 25000. 
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--splitter-coarse-region 

 splitter  triangular motif region size. Default: 3000000. 

--splitter-coarse-stringency 

 splitter stringency parameter. Default: 55. 

--splitter-saturation-centile 

 splitter saturation parameter. Default: 5. 

--splitter-fine-resolution 

 splitter fine matrix resolution, should be one of the following: 
2500000, 1000000, 500000, 250000, 100000, 50000, 25000, 
10000, 5000, 1000. Default: 1000. 

 

**merged supplementary options** 

--merger-band-size  

 band size for alternative haplotype search. Hardcoded: 1000000. 

--merger-lastz-options 

 options to pass to LASTZ for alignment of draft fragments. 
Hardcoded: XXX. 

--merger-sequence-identity  

 threshold sequence identity to classify fragments as alternative 
haplotype sequences. Hardcoded: XXX. 

Note that the use of Juicebox Assembly Tools in the majority of cases alleviates the need 
to perform parameter sweeps on these with defaults working extremely well, requiring 
only very limited amount of polishing in Juicebox Assembly Tools. And even if the 
specific assembly project qualifies as one of the ‘special’ non-default cases such as those 
listed above, 3D-DNA provides output files that can be visually explored in Juicebox 
Assembly Tools to help with the parameter tuning. See below for a detailed discussion of 
output files. 
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Individual Pipeline Modules 
The pipeline has a modular structure (see FIGURE 4). Wrapper script run-asm-pipeline.sh 
calls individual modules of the pipeline more or less in succession, starting with scaffold, 
visualize and edit and moving on to polish, split, seal, merge and finalize output. Code 
related to individual modules is organized into folders. The modules can be run as 
separate scripts. To skip earlier stages of the pipeline and fast-forward to later modules 
(when for example rerunning with different parameters) use –s|--stage flag (see Quick 
Start, Arguments and Options). 

The list of individual modules with their core wrapper scripts is given below. Run the 
wrapper script with the –h flag to learn more about each individual module. 

SCAFFOLD 

Main script: ./scaffold/run-liger-scaffolder.sh 

This module performs ordering and orientation of a given set of scaffolds, transforming a 
list of individual fragment sequences into a single megascaffold based on 3D proximity. 
The megascaffold is examined to help detect misjoins or retained for post-processing 
including splitting into individual chromosomes. 

VISUALIZE 

Main script: ./visualize/run-assembly-visualizer.sh 

This module makes Juicebox Assembly Tools-compatible contact maps. The script can 
be used to visualize any assembly (draft or chromosome-length) and is used by 3D-DNA 
to generate contact maps as the pipeline moves from stage to stage to facilitate review and 
parameter tuning, if necessary. 

EDIT 

Main script: ./edit/run-misassembly-detector.sh 

This module contains scripts to implement the 3D-DNA misjoin detection and 
correction algorithm from (Dudchenko et al. 2017). This is a module that is most likely to 
require parameter tuning when dealing with special use cases such as partially 
heterozygous drafts, older types of proximity data, noisy or biased Hi-C signal. Load the 
1D-annotation files .wig and .bed output by this module to Juicebox Assembly Tools to 
check its performance (see also some comments on this below). 
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POLISH 

Main script: ./polish/run-asm-polisher.sh 

This module is designed to address an error modality in the basic 3D-DNA scaffolding 
algorithm when large-scale 3D interactions confine the signal from the diagonal – the 
‘core’ signal associated with 1D proximity. This can sometimes happen when 
accumulating signal across large segments of the genome assembly, for example when 
working with very large initial fragments. The module attempts to address the issue by 
analyzing and splitting the assembly where near-diagonal signal discrepancies are detected 
(by running a modified version of the misassembly detection algorithm), and putting 
them back together based on the near-diagonal Hi-C signal. While tuning the parameters 
for polish is very easy using the .wig and .bed output files associated with this module, it is 
also true that, because such errors are rare and very obvious in Juicebox Assembly Tools, 
it is often easier and faster to address them in JBAT rather than in 3D-DNA. 

SPLIT 

Main script: ./split/run-asm-splitter.sh 

This module attempts to split the megascaffold output by the previous sections of the 
pipeline into chromosomes. The module works by looking at large-scale discrepancies in 
the Hi-C signal near the diagonal (by running a modified misassembly detection script). 
Similar to polish, while it is easy to tune the parameters for split using the associated .wig 
and .bed output files, the signal associated with chromosome boundaries is, as a rule, 
apparent when examining the results in Juicebox Assembly Tools and, which allows to 
rectify any default output problems there. 

Note that there is a chromosome-number-aware version of the splitter module that works 
by either (1) attempting to take advantage of the signal associated with chromosome 
territories or (2) attempting to take advantage of the telomere-to-telomere contact 
enrichment associated with genomes in Rabl configuration. See split_chrom_aware folder 
for associated scripts. 

SEAL 

Main script: ./seal-asm.sh 

This module attempts to remove false-positive edits by reintroducing some ‘debris’ 
fragments (fragment labeled as internally inconsistent and excised from the chromosome-
length portion of the sequence) back into the assembly if the pieces on either side of the 
debris region remain in the order and orientation consistent with the original scaffold 
even after the cut. This module is currently undergoing some development. 
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MERGE 

Main script: ./merge/run-asm-merger.sh 

This module is undergoing development as part of our work with the Aedes Genome 
Working Group, see (Matthews, Dudchenko, Kingan et al. 2017). We hope to share the 
updated version of the merge module soon. 

FINALIZE 

Main script: ./finalize/finalize-output.sh 

This block generates the final fasta output from the custom formats used internally by the 
pipeline (.assembly and, deprecated, .cprops and .asm). During the final fasta generation the 
input scaffolds identified as part of the same chromosome-length scaffold are joined, 
taking into account the suggested order and orientation, while adding a gap of fixed size 
(500bp) in between each pair of input scaffolds. A supplementary ./finalize-output-w-
stats.sh script in this module can be used to produce more comprehensive output 
including breakdown into various assembly components to facilitate calculating assembly 
statistics such as those included in (Dudchenko et al. 2017), Supplementary Online 
Material. 

ADDITIONAL MODULES 

Additional modules include: 

• utils – several core scripts that are used across modules including for .assembly file 
generation from any .fasta file; 

• lift – several core scripts to do liftover coordinates from the draft to the final 
assembly and vice versa; 

• supp – several additional scripts including those for creating chromograms, see 
(Dudchenko et al. 2017, 2018). It also holds legacy scripts to match map data and 
generate initial conditions for AaegL4 and CpipJ3 genome assemblies from 
(Dudchenko et al. 2017). 

• data – mapping data tables used for validation of the Aedes aegypti and Culex 
quinquefasciatus genome assemblies from (Dudchenko et al. 2017). 

Output files 
The pipeline generates a number of files as it progresses. The files, designed to be 
loadable in Juicebox Assembly Tools (and in many cases compatible with vanilla Juicebox 
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functionality) serve to provide the user with some information on the performance and 
give the opportunity to tune the parameters of the pipeline if necessary. Several most 
important file types are listed below. The main output is the fasta annotated as “FINAL” 
which contains the output candidate chromosome-length scaffolds. 

• .fasta files 

o The .fasta is a standard text format for representing nuclear sequences. 
The output files in the .fasta format include chromosome-length 
sequences, labeled “FINAL”. Several additional fasta files are generated 
by the pipeline, including all individual fragments of the draft sequences 
generated as part of misjoin detection and merging (if in diploid mode). 

• .hic files  

o The .hic file is a highly compressed binary file that stores contact matrices 
from multiple resolutions in a clever way, allowing random access. Read 
more about the .hic format here: 
https://github.com/theaidenlab/juicer/wiki/Data#hic-files. 

o The output files in the .hic format include “final” – contact map, 
corresponding to the final chromosome-length output (when running in 
haploid mode). This is a most natural candidate for review in Juicebox 
Assembly Tools (to be used with the corresponding final .assembly file, see 
below). 

o “sealed”, “polished”, “resolved”, [0123…] etc. represent contact maps 
corresponding to assembly pipeline stages. These can also be loaded and 
reviewed in Juicebox Assembly Tools, together with their corresponding 
.assembly files. 

• .assembly (and legacy .cprops and .asm files) 

o Space-delimited text that encodes, in a concise manner, a set of 
instructions to be performed on draft sequences including splitting, 
changing their order, orientation and anchoring into chromosomes. 
(Previously the information was split between two other file formats, 
.cprops and .asm, now deprecated.) Files are generated for all stages of the 
pipeline. 

• .scaffold_track.txt & .superscaf_track.txt 

o Stand-alone scaffold and superscaffold (chromosome) boundary files in 
Juicebox 2D annotation format. Files are generated for all stages of the 
pipeline. These can be used when limited to vanilla Juicebox functionality 
but not necessary when using Juicebox Assembly Tools (boundary 
annotations will be automatically generated based on the .assembly file). 
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• .bed & .wig files 

o 1D-track files illustrating signals used by the misjoin detector, collapsed 
repeat detector, polisher and chromosome slitter. Invaluable when 
troubleshooting these pipeline stages. The files can be loaded into 
Juicebox to be reviewed together with the corresponding .hic file. Note 
that the files are not yet compatible with Juicebox Assembly Tools, i.e. 
can be viewed only with respect to vanilla 3D-DNA output, prior to 
interactive revisions. See FIGURE 5 for an example of ‘normal-looking’ 
1D tracks.  

• more files: 

o edits.for.step.*.txt; mismatches.at.step.*.txt; suspect_2D.at.step.*.txt – list of 
problematic regions (Juicebox 2D annotation format). 

o alignments.txt (for diploid mode only) – pairwise alignment data for 
alternative haplotype candidates, as generated by LASTZ. 
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FIGURE 5. Exploring 1D tracks to analyze the output of the 3D-DNA pipeline. In this example .wig files illustrating the saturation 
signal used by the 3D-DNA pipeline to detect misjoins is loaded in blue, and the calls made by the pipeline (stored in the .bed file format) 
based on this signal are loaded in green. Both ‘coarse’ and ‘fine’ calls for misjoins are shown. Similar tracks are available for coverage 
anomalies, and when polishing and splitting into chromosomes. From (Dudchenko et al. 2017). 

Miscellaneous 
• When running a haploid version of the pipeline a good sanity check is to evaluate 

the total number of sequenced bases in the FINAL fasta: it should be the same as 
in the draft fasta. (In diploid mode this invariant does not hold.) The following 
script can be helpful for this: ./supp/fasta-count-sequenced-bases.sh. 

• Note that at present our 3D de novo assembly pipeline does not properly handle 
ambiguous bases in the draft genome sequence. If the draft fasta you are working 
with contains ambiguous bases, we recommend that you convert them to Ns 
before running 3D-DNA (or before finalizing the fasta). 
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• Suboptimal Hi-C libraries can often lead to large coverage biases. A highly 
uneven coverage signal can mislead the default collapsed repeat detector, leading 
to large proportion of sequence being annotated as debris: check the .wig and .bed 
files associated with repeat annotation to check if suspecting this scenario and 
increase the default threshold repeat coverage if necessary. Similarly, suboptimal 
of insufficiently sequenced Hi-C libraries can fail to saturate near the diagonal, 
again leading to too much sequence being annotated as problematic: check the 
.wig and .bed files if suspecting this to be the case. Tweak the editor parameters to 
improve performance on your data. Note that coverage biases and insufficient 
saturation are sometimes observed when using long-read draft sequences (due to 
alignment biases) or scaffolds with very large gaps (see Intermediate Linking Data 
section), even when the Hi-C library appears good in QC. 

References 
If you use 3D-DNA in your work, please cite the following papers: 

Olga Dudchenko, Sanjit S. Batra*, Arina D. Omer*, Sarah K. Nyquist, Marie Hoeger, 
Neva C. Durand, Muhammad S. Shamim, et al. 2017. “De Novo Assembly of the 
Aedes Aegypti Genome Using Hi-C Yields Chromosome-Length Scaffolds.” 
Science 356 (6333): 92–95. https://doi.org/10.1126/science.aal3327. (*These authors 
contributed equally to this work); 

and 

Neva C. Durand*, James T. Robinson*, Muhammad S. Shamim, Ido Machol, Jill P. 
Mesirov, Eric S. Lander, and Erez Lieberman Aiden. 2016. “Juicebox Provides a 
Visualization System for Hi-C Contact Maps with Unlimited Zoom.” Cell Systems 
3 (1): 99–101. https://doi.org/10.1016/j.cels.2015.07.012. (*These authors contributed 
equally to this work). 



R E V I E W  I N  J U I C E B O X  A S S E M B L Y  T O O L S  

Assembly Review with 
Juicebox Assembly Tools 

rrors in genome assemblies are, as a rule, visually obvious in Hi-C maps. When 
the reference is correctly assembled, the loci that are adjacent in the 1D assembly 
are also in close physical proximity in the Hi-C experiment, leading to the 
appearance of a bright band of elevated contact frequencies along the diagonal 

of the Hi-C heatmap. Conversely, when there are errors in the reference assembly, 
anomalous patterns appear in the heatmap, indicating disagreement between the 1D and 
the 3D signals. 

3D-DNA generates assembly heatmaps as part of its workflow (see Chapter 4, Individual 
Pipeline Modules: visualize). The heatmaps are created by partitioning the genome 
assembly into loci of fixed size; and each heatmap entry indicates the frequency of contact 
between a pair of loci. The heatmaps provide user with information about the progress of 
the pipeline as well as instruct on how to tune assembly parameters if the defaults do not 
fit a particular task at hand. 

In practice, the default parameters often work adequately for a wide range of problems, 
generating a chromosome-length assembly with very few remaining errors without any 
tuning. Thus, rather than sweeping across a wide array of parameters to identify a reliable 
options setting for a particular genome, it is more efficient to manually identify and 
remove the few remaining assembly errors. Manual review and refinement also helps to 
push the limits of genome assembly, for example generating reliable genomes with less 
input data than recommended for automatic workflow. 

Assembly Tools is a new module in the Juicebox desktop application that extends the 
Juicebox interface for Hi-C data visualization to allow for interactive assembly refinement. 
When assembly errors are found, users can correct them, using a simple point-and-click 
interface, in a matter of seconds. Both the heatmap and the reference genome are 
updated in real-time to reflect these changes. Using Juicebox Assembly Tools (JBAT), 
users can improve genomes and reduce the cost of genome assembly. JBAT can also be 
used to assemble genomes manually. 

For a quick start, check out this tutorial video: 

https://www.youtube.com/watch?v=Nj7RhQZHM18. 

Chapter 
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Environment 
The layout of the Juicebox Assembly Tools is show in FIGURE 6. The user interface 
consists of: the Contact map window, Menu bar, View controls, Right side and 
Annotation panels. The contact map window includes the name of the contact map and 
the Juicebox distribution. Juicebox Assembly Tools are available starting with distribution 
1.8.7. Latest distribution (1.8.8) is recommended.  

 

FIGURE 6. Juicebox Assembly Tools environment illustrated with hs-1k genome assembly data, see (Dudchenko et al. 2018). KR-
normalized data (Normalization: Balanced) binned at 250kb resolution (Resolution slider: 250kb) is being analyzed. Only a fragment of the 
map is visible in the contact map window: the position of the fragment with respect to the rest of the map is highlighted on the mini map 
in the right side panel. Three layers of annotations associated with the assembly are visible in the Annotation panel: green (draft scaffolds), 
blue (output superscaffolds/chromosomes), and yellow (for holding temporary annotations). The annotations appear as squares 
superimposed on the contact map along the diagonal. Annotation layers are automatically populated upon loading the ‘assembly’ .hic file 
(Chromosome: assembly) via the File menu and importing the associated .assembly file via Assembly menu. In this case, the .hic and .assembly 
files were generated by 3D-DNA. Only a few green (scaffold) annotations are visible along the diagonal of the map: most of the individual 
scaffolds in hs-1k draft are too small to be visible at this zoom level. The center of the map is dominated by one blue (chromosome) 
annotation representing a single chromosome-scale superscaffold. A set of consecutive scaffolds is selected (encompassed by a yellow 
temporary annotation square with black highlight), and the detailed information associated with the selected scaffolds is displayed in the 
information panel under the mini map. A mouse cursor prompt for inverting the selected fragment of the assembly is shown in the lower 
left corner of the selection annotation square. If clicked, the action will result in changes to the contact map as well as to the underlying 
assembly. Changes to the assembly can be exported as a modified .assembly file via Assembly menu. The modified .assembly can be converted 
into corresponding changes in the reference .fasta sequence (in this case substitution of the selected sequence in the assembly for its reverse 
complement) using a simple command-line script (distributed as part of the 3D-DNA package). From (Dudchenko et al. 2018), with 
modifications. 

The main JBAT components are described below. Note that the description will focus on 
new UI items relevant to genome assembly. Those available in older Juicebox 
distributions are documented here: https://github.com/theaidenlab/Juicebox/wiki. 
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MAIN MENU 

The File and Assembly menus are most important when working in the context of 
Juicebox Assembly Tools. 

The File menu is the main entry point and is used to load .hic files into the contact map 
window. Note that although we are working on making JBAT compatible will all .hic files 
at present interactive assembly is possible only with ‘assembly’ .hic files, generated while 
representing the reference as an abstract ‘assembly’ chromosome. Any contact map can 
be represented this way (see notes in the Quick start guide on visualizing assemblies), and 
3D-DNA generates .hic files in compatible format by default. 

The Assembly menu is used to import .assembly files (menu item “Import Map Assembly”). 
These files are a concise representation of the reference .fasta file and serve to inform 
JBAT of how individual sequences in the underlying reference relate to loci in the contact 
map. It is thus very important that the .assembly and .hic files are generated using the same 
reference sequence. Any reference .fasta can be represented as a .assembly file (see notes in 
the Quick start guide on visualizing assemblies). 3D-DNA generates .assembly files for 
each .hic contact map automatically. 

Assembly menu is also used to save changes to the assembly (in a form of a modified 
.assembly file; menu item “Export Assembly”). By default, the exported file will have a 
‘.review’ suffix added to the original .assembly filename. Note that .hic files remain 
unchanged throughout the review process. 

Assembly menu can also be used to load saved changes (menu item “Import Modified 
Assembly”). Note that when loading changes after exiting the application it is paramount 
to first load the original (unmodified) .assembly file via the “Import Map Assembly” menu 
item, and only then load the modified .assembly file. This is because, at least at present, the 
.hic file by itself does not contain any information about how the contact matrix positions 
relate to underlying sequences. The information needs to be added before the changes 
encoded in ,review.assembly file can be meaningfully interpreted. 

The View menu contains items for customizing the appearance of the contact map 
window. It is also the component to load 1D and 2D feature files (including .bed and .wig, 
.bedpe and .txt annotation files, coverage tracks etc. produced by 3D-DNA) to view them 
alongside the Hi-C map. 

Additional menus are available via Bookmarks, where one can save the details of one’s 
location to load reconstruct the contact map window appearance again later, and via Dev, 
which contains several menu items under development. 

VIEW CONTROLS 

The View controls allows one to select chromosomes (in JBAT context there is only one 
“assembly” pseudochromosome), switch between Observed, Observed/Expected, 
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Control (currently not available in JBAT), and other views, adjust normalization, change 
the resolution, fine-tune the color range, or go to a specific location in the contact map. 
When working in Juicebox Assembly Tools “Goto” control can also be used to search 
for map area corresponding to specific reference sequences by sequence names. 

CONTACT MAP WINDOW 

This is where the heat maps load. One can pan by grabbing the map with the mouse and 
moving or by scrolling: scrolling on top of the contact map shifts the display area along 
the diagonal while scrolling on top of the chromosome icons (visible at the bottom and 
on the right of the contact map area) shifts the display area vertically or horizontally. 
Double-clicking zooms in. You can also zoom in by holding down ALT key and drawing 
a box around a region of interest. 

ANNOTATION PANEL 

This is a quick access panel for 2D annotations (also accessible via View menu). 2D 
annotations play an important role in JBAT as they are used to establish correspondence 
between the reference sequences and the loci on the contact map. 

Assembly annotations appear as squares superimposed on the contact map along the 
diagonal, at positions defined by the linear coordinate of the individual sequence in the 
assembly, and with the side equal to sequence length. (If the assembly consists of more 
than one chromosome ‘global’ assembly coordinates are calculated i.e. 1D coordinates 
along a particular chromosome are shifted by the total length of preceding 
chromosomes.) 

Thus, each annotation square flanks the region on the contact map that displays the 
frequency of contacts of loci within the given sequence. The areas to the top center and 
bottom center, as well as to the left center and right center from the square shows the 
frequency of contacts of the loci from the given sequence with loci on other reference 
sequences. 

When loading a .assembly file the annotation panel is automatically populated with three 
layers: Scaf (for displaying scaffold boundaries, shown in green color by default), Chr (for 
displaying chromosome boundaries, in blue), and Edit (for temporary annotations, in 
yellow). Scaffolds represent individual entries in the draft .fasta file used as a reference to 
build a Hi-C map. (Note that draft sequences very well may be contiguous, the term 
‘scaffolds’ is used here as more generic.) Scaffolds can be grouped into chromosomes 
(superscaffolds). Grouping two scaffolds within the same chromosome/superscaffold 
(having two green squares encompassed by a single blue square on a contact map) is a 
signal that the scaffold sequences should be joined into a single sequence in the output 
.fasta file, when finalizing the output from the reviewed .assembly file. (A gap of fixed size 
will be added between the draft scaffolds.) 
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Note that to increase performance only annotations larger than one pixel size are 
displayed at a given zoom/resolution level. Zoom in in order to see smaller annotations. 

Scaffolds are the main focus of user interaction in JBAT. Individual scaffolds can be 
selected using shift clicking, allowing for the following actions to be performed: cut (cut 
the scaffold into smaller fragments, necessary for misjoin correction), move (move the 
scaffold to a new position in the assembly, necessary for correcting translocations) and 
flip (substitute the underlying sequence for its reverse complement in the assembly, 
necessary for correcting inversions), see the detailed descriptions on how to perform 
these actions below. Translocations and inversions can be performed on selections of 
successive scaffolds as well as on individual scaffolds (use shift drag to select consecutive 
scaffolds). The selection is represented as a temporary yellow annotation square (with 
black highlight), encompassing the selected scaffolds (see FIGURE 6). 

In addition to the three actions described above chromosome boundaries can be added 
and removed between any given pair of scaffolds (see below), reflected by the changes in 
the appearance of the annotations in the chromosome annotation layer. 

Several buttons are available on the quick access annotation panel to hide/display 
individual layers or customize the appearance of the annotations. More customization 
options are available in the extended annotation layer panel (available via “Show 
Annotation Panel” button) as well as through several shortcut keys: use F2 to toggle the 
visibility of the layers, F3 to enlarge annotations (use this to make all the annotations 
visible, even those smaller than one pixel at a given zoom level), F4 to toggle 
transparency, and F6 to customize the plotting style. 

RIGHT SIDE PANEL 

The right side panel contains the mini map and the information panel. 

The mini map serves to help the user orient oneself with respect to the genome assembly 
(or chromosome when using vanilla Juicebox). One can move the transparent square in 
the mini map to quickly move to the corresponding position in the main contact map 
window. 

When the mouse moves over the heat map, the text in the pane is updated with 
information about the specific Hi-C pixel.  When features such as 2D annotations are 
superimposed on top of the map, detailed information about them appears here when the 
mouse hovers over the feature. In the context of assembly tools this information includes 
scaffold name and id (number assigned to the scaffold in the .assembly format), scaffold 
orientation (in the form of the ‘signed’ id as represented by the .assembly file, with positive 
id reflecting that the sequence should be incorporated into the final assembly in the same 
orientation as it appears in the draft .fasta file, while the negative id calls for a reverse 
complement), as well as current 1D coordinates of the sequence corresponding to the 
annotation. Chromosome (superscaffold) ids and coordinates are also shown. When there 
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is an active selection the information panel is frozen displaying the data relevant to the 
selected scaffolds (see FIGURE 6). 

Modifying Assembly in JBAT 
Juicebox Assembly Tools allow for visual identification and interactive correction of 
errors in genome assemblies. The corrections are stored in a form of a .assembly file, a 
concise custom text format (used also by the 3D-DNA pipeline) that, when applied to the 
original reference .fasta by means of a simple command-line script, produces a modified 
reference .fasta reflecting the changes introduced by the user. In this section we describe 
four common types of misassemblies and the corresponding actions available in JBAT to 
address them. The user interface for this relies on a system of custom situational pointers. 

The misassemblies in this section are illustrated using an example GM12878 Hi-C data set 
(100M reads from HIC001 library shared in (Rao, Huntley et al. 2014)). This human Hi-C 
data is aligned to a simulated genome assembly created by deliberately introducing errors 
into the sequence of two chromosome-length scaffolds from hg19 (chromosomes 2 and 
4). The position of the loci according to hg19 is shown using chromograms (rainbow 
tracks on top in FIGURE 8, FIGURE 9, FIGURE 10, and FIGURE 11). (For the purpose 
of illustration, gaps have been removed from hg19 sequence.) The original pseudo 
assembly consists of 4 scaffolds grouped into 3 chromosomes. 

MISJOINS 

A ‘misjoin’ error in JBAT is defined as a misjoin in the draft input scaffold or contig, i.e. 
when regions that are not in close 1D proximity along the chromosome (or even belong 
to different chromosomes), are spliced together as part of the same input sequence. 

Misjoins typically manifest as breaks in the bright band of elevated contact frequency 
along the diagonal inside a green square annotation (see FIGURE 8, left), reflecting the 
lack of physical proximity between sequences implied to be nearby by the draft. 

The errors are addressed in a manner similar to that employed by 3D-DNA (see FIGURE 
7): by excising a small region around the breakpoint, effectively cutting the original 
scaffold into three pieces. The procedure results in two internally consistent fragments of 
the original draft scaffold. The excised fragment is labeled as ‘debris’ and moved to the 
very end of the assembly. Debris fragments cannot be subject to more cutting. 

In order to fix the misjoin, select the problematic scaffold by shift clicking on it (a black-
and-yellow highlight will appear around the selected scaffold). Then, move the mouse 
towards the diagonal of the heatmap: a scissor-shaped situational pointer will appear as an 
invitation to ‘cut’ the scaffold (see FIGURE 8, middle). An accompanying dotted yellow 
edit annotation will show the region that will be excised out of the sequence once the 
scissor cursor is clicked. Use scroll to increase or decrease the size of the region flanking 
the tentative breakpoint. Note that the ‘cut’ cursor prompt appears only when the 
selection constitutes a single scaffold. 
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When happy with the tentative cut click the mouse: this will result in the appearance of 
two new scaffolds in place of the original one (and correspondingly two new green 
scaffold annotations along the diagonal in place of one), see FIGURE 8, right. The small 
‘debris’ scaffold is moved to the very end of the assembly and kept there for future 
reference. 

 

FIGURE 7. Misjoin correction, conceptual scheme. A problematic region that lies inside an input scaffold (a bin marked with an X), 
gets excised resulting in two internally consistent fragments of the original input scaffold (labeled as ‘fragments’). The third fragment that 
spans a misassembled region is labeled as ‘debris’. The debirs fragments are moved to the very end of the genome assembly where they are 
kept for future reference. From (Dudchenko et al. 2017). 

 

 

FIGURE 8. Misjoin correction example. Left panel shows a typical anomalous Hi-C signal associated with a misjoin: a draft scaffold 
containing a point along the diagonal such that the signal to the lower-left and the upper -right from the point is extremely depleted, 
reflecting the lack of physical proximity between sequences upstream and downstream of the point. In order to correct for the error select 
the problematic scaffold, move the mouse towards the diagonal and position the appearing situational pointer in such a way that the dotted 
‘debris’ annotation is encompassing the breakpoint, see middle panel. (One can use scroll to adjust the size of the region flanking the 
breakpoint.) Once the mouse is clicked, the small debris sequence is excised and moved to the very end of the assembly, leaving behind 
two internally consistent scaffolds in place of the original one, available for downstream user interaction (right panel). The assembly at this 
point consists of 5 scaffolds joined into 3 chromosomes and a very small 6th debris scaffold. From (Dudchenko et al. 2018), with 
modifications. 

TRANSLOCATIONS 

A common type of error in genome assembly is a translocation. In the context of JBAT 
to fix a translocation is to change the order of draft scaffolds in the reference genome 
assembly. Translocation error typically manifests as a vertical and a symmetric horizontal 
bowtie-ish enrichment motif away from the diagonal, indicating that two sequences not in 
close 1D proximity along the reference genome assembly exhibit unexpectedly high levels 
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of Hi-C contact. The points of highest enrichment within the bowtie motif point to 
sequences that need to be ‘brought together’ (see FIGURE 9, left). 

To reorder the scaffolds select the sequence that one wants to translocate, and move the 
mouse towards the new desired position in between two consecutive draft scaffolds. This 
will result in appearance of an arrow situational pointer (see FIGURE 9, middle). (Note 
that the prompt will not appear if the two scaffolds are not consecutive in the assembly 
and hence the position of the suggested insertion cannot be unambiguously interpreted 
from the mouse prompt. This can lead to seemingly unresponsive behavior when trying 
to insert between two scaffolds that have small elements in between them. In such cases 
zoom in in order to unambiguously indicate the new position for the selected scaffold.) 

Once the pointer is clicked, the scaffold is moved into a new position (indicated by the 
arrow) in the reference assembly and the contact map is recalculated accordingly (see 
FIGURE 9, right). Note that translocation can be performed on a selection consisting of 
multiple scaffolds. 

 

FIGURE 9. Translocation correction example. The left panel shows a typical anomalous Hi-C signal associated with a translocation: a 
bowtie-ish enrichment motif away from the diagonal indicating that loci not in close 1D proximity according to the reference assembly 
display unexpectedly high frequency of contact. The middle panel shows a situational pointer indicating a possible correction move: once 
clicked, the move will result in a relocation of the selected sequence (indicated by the yellow and black highlight) in between two scaffolds 
as indicated by the arrow. The right panel shows the result of the move, with both the reference and the heatmap updated to reflect the 
change. The anomalous off-diagonal motif is now gone. From (Dudchenko et al. 2018), with modifications. 

INVERSIONS 

Another typical error in genome assemblies is an inversion error. In JBAT, to fix an 
inversion is to change the orientation of the sequence represented by a single scaffold or a 
group of consecutive scaffolds. This error typically manifests as a bowtie enrichment 
motif, in parallel to the diagonal. The midpoint of the motif defines the region of the 
genome assembly that needs to be inverted (see FIGURE 10, left). 

In order to fix the inversion, select the scaffold (or scaffolds) encompassing the region in 
question and move the mouse to either the bottom-left or the top-right corner of the 
selection. A situational pointer for flipping the sequence will appear as in FIGURE 10, 
middle. 
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Once the mouse is clicked, the sequence of the selected scaffold in the reference genome 
assembly will be substituted for its reverse complement. The contact map is updated in 
real time to reflect the change (see FIGURE 10, right). 

 

FIGURE 10. Inversion correction example. The arrow in the left panel highlights the anomalous contact motif characteristic of the 
inversion: a bowtie enrichment motif, parallel to the diagonal, indicating that the sequence at the beginning of the region flanked by the 
motif is in close proximity with the scaffold immediately downstream from the region and, vice versa, the sequence at the very end of the 
flanked region is in close proximity with the scaffold immediately upstream. In order to correct for the inversion, select the scaffold or 
scaffolds flanked by the motif and move the mouse towards either the bottom-left or the top-right corner. A prompt will appear as in the 
middle panel for inverting the selected sequence. Once clicked, instructions for reverse-complementing the relevant sequence in the 
reference genome assembly are cached, and the map is updated to reflect the change to the reference (right panel). The anomalous bowtie 
motif is no more. From (Dudchenko et al. 2018), with modifications. 

CHROMOSOME BOUNDARIES 

Adjusting chromosome boundaries is another type of assembly polishing that can be 
addressed via Juicebox Assembly Tools. In JBAT, chromosome boundaries can be added 
or removed between scaffolds, indicating whether the latter should appear as part of the 
same output sequence or not. 

Consider the example from FIGURE 11. In this example, though the contact map appears 
to consist of two large enriched squares representing two chromosome territories, the 
assembly is split into three chromosomes (three blue annotations). In order to remove the 
extra boundary (indicated by the arrow in the left panel), move the mouse cursor in 
between the scaffolds that flank the chromosome breakpoint (no scaffolds should be 
selected for this): a situational pointer for toggling a chromosome boundary will appear as 
in FIGURE 11, middle panel. Upon click, scaffolds in chromosome groups immediately 
upstream and downstream from the boundary will be joined into a single group, reflected 
by the changes in blue chromosome layer annotations (see FIGURE 11, right panel). The 
new assembly now consists of two chromosome-length scaffolds. Note that chromosome 
boundaries can be added and removed between any two scaffolds, and the situational 
prompt for both actions is the same. 
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FIGURE 11. Adjusting chromosome boundaries with JBAT. In this case, the tentative assembly (left panel) consists of three 
chromosomes while the Hi-C signal suggests two chromosomes. The anomalous signal is in some sense opposite to the one observed for 
misjoin: sequences that belong to two different chromosomes according to the assembly and are hence not in close 1D proximity 
nonetheless exhibit strong interaction according to the Hi-C signal, indicated by a strong, unbroken diagonal (see arrow in the left panel 
and compare to the signal associated with the ‘true’ chromosome boundary upstream from the pointer). The extra chromosome boundary 
should as such be removed. In order to perform the action move the mouse pointer towards the diagonal, in between the two scaffolds 
flanking the breakpoint: a situational prompt will appear as shown in the middle panel. On click the chromosome boundary is removed, 
reflected by the changes in the blue chromosome layer annotations as in the right panel. 

Right-click Menu, Undo and Redo 
The context menu in JBAT mirrors that in vanilla Juicebox except for three additional 
menu items: “Move to debris”, “Undo” and “Redo.” 

The “Move to debris” menu item serves to move a selection of scaffolds to the very end 
of the assembly. This may be useful when dealing with sparse or ambiguous signal, and 
when the requirements for accuracy overweigh the loss of information associated with the 
removal of a sequence from a plausible location in the chromosome-length portion of the 
assembly. 

“Undo” menu item work to reverse the last assembly modification, and the “Redo” 
reverses the last Undo. The actions are available also as hotkeys: Command-U (Ctrl-U on 
Windows) and Command-R (Ctrl-R on Windows) for Undo and Redo, respectively. 

Generating Fasta after JBAT Review 
Use Assembly menu item “Export Assembly” to save the changes introduced during JBAT 
review. The changes are saved in the form of a modified .assembly file. By default, 
incorporating a ‘review’ suffix to the exported file name will be suggested in order to 
avoid overwriting the original .assembly file. (Remember that you may need the original 
.assembly in order to resume work on the assembly or to quickly visualize changes to the 
Hi-C map introduced by the review without rebuilding the .hic file from scratch, see notes 
on this in the “main menu” section in the “Environment” paragraph.) 

The easiest way to convert the reviewed .assembly file into a fasta is to use the command-
line tools distributed as part of the 3D-DNA package.  To finalize the results run the 
following script: 

Example run with default parameters 
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./run-asm-pipeline-post-review.sh –r draft.review.assembly draft.fa \ 
merged_nodups.txt 

The script will not only generate the final fasta (labeled with a “FINAL” suffix), but also 
rebuild the final .hic map for quality control. Check help for available options to customize 
output. 

Miscellaneous 
• Assembly menu item “Reset Assembly”: use this to reverse all changes to the 

assembly 

• Assembly menu item “Set Scale”: a legacy option that allows one to rescale the Hi-
C maps produced by 3D-DNA. (Due to data type limitations, the maps are scaled 
for large genomes.) After loading the assembly file the scale is set automatically. 

• Move scaffold to the beginning of the assembly: we are working to add this 
convenience function to JBAT. For now this can only be achieved in two steps. 

• Consider removing small individual scaffolds from your draft or preliminary 
assembly or ‘bundling’ small input scaffolds when reviewing very large .assembly 
files (containing hundreds of thousands of scaffolds) if having trouble with 
responsiveness. The idea behind the procedure is to either remove or group the 
scaffolds that are too small to reliably interact with into a temporary group to 
avoid the need of keeping track of them individually. The command-line scripts 
for bundling and unbundling are currently distributed as part of the 3D-DNA 
pipeline (see Utilities section). At some point we will make bundling/unbundling 
interactive and part of JBAT. 

• Legacy .cprops and .asm formats are supported, though not encouraged. Select 
both files instead of a single .assembly file when loading assembly through the 
“Import Map Assembly” in the Assembly menu. Converting .cprops and .asm into 
the .assembly file format using 3D-DNA command-line tools (see Utilities section) 
and importing the result leads is equivalent to loading two legacy files. 

• Windows machines may introduce carriage return characters that can cause 
problems when finalizing fasta from .assembly file. We will address this in the next 
JBAT release. In the meantime, if working on the Windows machine make sure 
to get rid of carriage returns in favor of a line feed character before running run-
asm-pipeline-post-review.sh. 
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F R E Q U E N T L Y  A S K E D  Q U E S T I O N S  

Frequently Asked 
Questions 

oming soon. For now please check our online forum at 
http://www.aidenlab.org/forum.html. It is possible that we have already 
answered your question there! 
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